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Abstract—The research of a safe Worst-Case Execution Time
(WCET) estimation is necessary to build reliable hard, critical
real-time systems. Infeasible paths are a major cause of overesti-
mation of the Worst-Case Execution Time (WCET): without data
flow constraints, static analysis by implicit path enumeration will
take into account semantically impossible, potentially expensive
execution paths, making the Worst-Case Execution Path unreach-
able in practice. We present in this paper an approach that allows
to significantly tighten the WCET by identifying infeasible paths,
namely in loops, and injecting them as additional Integer Linear
Programming (ILP) constraints during the WCET computation.
Our entire analysis, albeit platform independent, works directly
on binary programs in order to get the tightest, most reliable
WCET. Impactful infeasible paths are largely found within
(often nested) loops; therefore having an efficient, exploitable
and reasonably scalable representation of the state of a program
within loops is a key challenge of infeasible path analysis.
We show ours to yield decidedly significant results on a selection
of benchmarks from actual hard real-time applications as well
as the classic Mälardalen suite.

I. INTRODUCTION

Worst-Case Execution Time (WCET) estimation is indis-
pensable in order to ensure the safety of critical embedded
systems: tasks in such systems must always be executed in
a reasonable time. Because these tasks may be repeatedly
executed at a high frequency or on a large amount of devices,
extensive tests are not enough: exceptional scenarios in which
the program performs unordinarily poorly are a threat to the
system safety that cannot reliably be detected by anything but
static analysis.

On top of the difficulty of accurately modelling the hardware
of these systems, the search of the longest path through the
program is very computationally complex. The Implicit Path
Enumeration Technique (IPET) is a realistic approach to find a
reasonable upper bound to such programs. Because finding the
real WCET is practically impossible, we are always looking
for an estimation proven to be higher than the real WCET.

Hence, the WCET may be estimated above its real value,
leading to additional costs due to consequently heavier hard-
ware requirements. We aim to reduce this unnecessary over-
head by tightening (i.e., lowering the value of) the WCET
estimation while keeping it safe, that is, above the real WCET.

We observe that, often, one important overestimation factor
is that the program can never actually run through the Worst-
Case Execution Path (WCEP) given by the Integer Linear
Programming (ILP) system representing the program: the
output WCET is actually an estimation of the execution time

of an infeasible, semantically impossible path (for example,
because of conflicting conditions).

In order to get the most reliable estimation, analysis is best
performed directly on the binary code: it is usually hard to link
flow information between the source code and the binaries due
to compiler tricks, including some average-case optimisations
that worsen the WCET. Although it is possible to work on
the source code [16] or on an intermediary representation
of a compiler [8] (thus making the WCET analysis com-
piler specific) and even propagate some optimisations to the
WCET [11], propagating facts from the source code can be
difficult; working on the binary code is the safest and most
direct approach to deal soundly with data flow information.

Contribution: This paper proposes a reasonably scalable
approach to infeasible path detection on binary programs that
deals with loops and function calls, in a way that preserves
enough information on the program states to detect impactful
infeasible paths within loops. Our analysis uses a composable
representation of the state of the program, and can be per-
formed on local parts of code such as the body of subroutines
and loops. Not only does this improve its efficiency, it also
helps to output infeasible paths with the most possibly general
scope, thus maximising their impact on the estimated WCET.

Outline: After a quick overview of published works
around the issue in Section II, we present our view on
binary programs in Section III. Section IV presents our choice
of abstraction of program states illustrated with a running
example, and Section V details our infeasible path detection
algorithm. Section VI showcases it on real-time benchmarks.

II. RELATED WORKS

Several works have previously been published on the topic
of infeasible paths detection.

In [7], [8], Gustafsson et al. present the abstract execution of
a program, that is, the execution of the program considering
ranges of values for input data and program variables. Ob-
servers are used along the execution to detect interesting flow
facts: loop bounds, mutually exclusive blocks or infeasible
paths. The approach is powerful and exhaustive but, in our
opinion, does not scale well with sizeable applications such
as those found in the industry: although the collected data is
abstracted to ranges of values, a lot of mostly concrete paths
still need to be executed.

Chen et al. [4] propose a combined approach to compute
the WCET and the feasibility of the corresponding path. Their
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analysis performs a backward traversal of the Control Flow
Graph (CFG) paths of a binary program and checks for the
satisfiability of pairs of condition-condition and assignment-
condition. During the computation, if a contradiction is ex-
posed, the corresponding path is rejected and ignored for the
remainder of the analysis. This approach has two main issues:
(a) it does not address programs with loops and (b) it only
supports very simple forms of conditions and assignments
made of a variable and a constant.

In [9], Holsti also presents a combined approach where
the time, loop bounds and program states are abstracted
using Presburger algebra extended to support undefined values.
A disjunction of possible states is maintained and, depending
on the condition, some states may be removed, along with
their corresponding execution path. The loop state blow-up
is reduced by expressing induction variables as a function
of the iteration number (as in our approach). Yet, the state
explosion caused by alternatives in the execution paths leaves
an important scalability issue which we will address.

Andalam et al. in [1] propose an integrated approach com-
puting Worst-Case Responsive Time (WCRT) and infeasible
paths together for synchronous languages (namely Esterel).
The application semantics, leading to infeasible paths, and the
WCRT calculation are supported by a model checker. The ap-
proach does not seem scalable due to the state explosion in
the model checker, and the way execution times are accounted
for is not realistic except for some very simple microprocessor
architectures.

In previous work [15], we have proposed a first approach
based on SMT solving to detect infeasible paths. It involves
building abstract states of the program as sets of predicates
on the processor registers and on the content of the memory.
At any point of the program, getting a non-satisfiable set of
predicates signals that the corresponding path is infeasible and
can be removed from the WCET computation. This paper
focused on the generation of minimal infeasible paths using
SMT unsat cores, which will not be detailed here. Although
the experimental results were encouraging, our representation
of the program states was difficult to maintain and the limited
support for loops was a major issue: abstract states at loop
entries were merged into one using a destructive intersection
of predicate sets, causing significant loss of information. In the
following sections, we propose a different approach to detect
infeasible paths that partially resolves the issues encountered.

III. PROGRAM REPRESENTATION

This section presents the concrete semantics of the pro-
cessed program, using a CFG to represent the control flow and
semantics instructions to represent the data flow. It is applied
to an example which is addressed throughout the paper.

A. Motivating example

Fig. 1 showcases an example of an impactful infeasible path:
the function compute can be called at most once per call to g
because the path that enters both if conditions is infeasible.

void f(int a) {
int x = 0, y = 0, i;
for(i = 0; i < N; i++) {

x = x + 1;
y = y + 2;

}
if(2 * x == y + a)

compute();
}
void g(int a) {

f(a);
if(a % 4 != 0)

compute();
}

Fig. 1. Example 1

If compute is an expensive function with a high WCET
compared to the operations in f, detecting this infeasible path
would almost halve the WCET estimation, because it would
otherwise account for two calls to compute.

The analysis of the function f would result in two paths (due
to the if statement): one that asserts that f was called with
a 6= 0 and one that asserts a = 0 (and goes through the call
to compute), because the loop analysis would deduce that
y = 2x and thus (2x = y+ a)⇔ (a = 0). Upon reaching the
condition in the function g, we observe that (a mod 4 6= 0)
conflicts with (y = 2x) ∧ (2x = y + a), and therefore that
the execution path going through both calls to compute is
semantically impossible.

In order to achieve this, we have to analyse the control flow
of the program and the semantics of the program execution.

B. Control Flow Graph

Parsing binary programs requires an adequate representation
of the control flow, which is provided by CFGs. A CFG G :=
(V,E, ε, ω) is a directed graph represented by a set of nodes
(the basic blocks V ), a set of edges (E ⊆ V × V ), an entry
node (ε ∈ V ) and an exit node (ω ∈ V ). Each node represents
a basic block, that is, a block of instructions that are always
read sequentially: an instruction cannot branch to the middle
of a block, and similarly, a branching instruction must be at
the end of a block.

A CFG represents the execution flow of a subroutine: calls
to a function are represented by a virtual block that substitutes
the execution of the callee function. A semantically equivalent
result is obtained by replacing that virtual block by the CFG
of the called subroutine. The CFG of the example in Fig. 1
is displayed in Fig. 2.

C. Concrete program states

The state of the machine at any point of the program is rep-
resented by a map from the registers Reg := {r0, r1, ..., rn−1}
and the memory Mem = N/232 (the set of addressable
memory cells1) to 32-bit integers: S := V → Z/232, where

1 N/232 and Z/232 are respectively the sets of naturals and integers that
can be represented on 32-bits, i.e. the size of machine words.
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Fig. 2. CFG of Example 1

V := (Reg ∪Mem) is the set of program variables. S is called
the set of concrete states.

Concrete states evolve throughout the program, and are
updated by each instruction execution. For this purpose, we
define the concrete interpretation function I that works on
a set of semantic instructions [2] noted Isem , that is, an
architecture-independent abstraction of machine instructions2.
Each machine instruction is translated by our framework into
one or several semantic instructions. This semantic instruction
set is built in a similar fashion to a RISC instruction set. I maps
each semantic instruction to a function on S that updates the
concrete state. For instance, the ADD, SUB, MUL, DIV, MOD
semantic instructions write in the first register the result of the
corresponding arithmetic operation on the two other registers.
Hence, for example, for any s ∈ S:

I[SUB r0, r0, r1] := s 7→ s [r0 7→ s(r0)− s(r1)]

2 Semantic instructions enable the easy extension of our analysis to any
instruction set.

where s [x 7→ k] denotes s where x now maps to k.
In order to detect conflicting conditions, the next section

proposes an abstract interpretation function Î and a corre-
sponding abstract state Ŝ expressing the states as predicates.
For example, any state of the block 8 from Fig. 2 includes
the predicate (y = 2x)∧ (a mod 4 6= 0), which interestingly
contradicts (2x = y + a). Section IV formalizes this abstrac-
tion.

IV. ABSTRACT INTERPRETATION

We propose an abstract domain that expresses the machine
states as predicates on registers and memory cells. This
abstraction is then extended to efficiently support the analysis
of loop iterations and of functions, independently of their call
context.

A. Abstraction by predicates

1) Definitions: An abstract program state is defined as a
disjunction of abstract states, in P(Ŝ). It represents the set of
states from all paths leading to this program point.

An abstract state in Ŝ is a triplet made of:
• L := Reg → Expr , an abstraction of the local variables;
• M := Mem → Expr , an abstraction of the memory (heap

and stack);
• P ∗ := (Expr × Φ × Expr)∗, a set of predicates in

conjunction, each made of an operator and two operands,
where the set of operators Φ is {=, 6=, <, ≤}.

L and M are merely a particular form of equality predicates.
Expr is inductively defined as either:
• a constant c ∈ C;
• a register rk ∈ Reg , identified by a number (between 0

and 16 for ARM processors, for example);
• a memory cell mc ∈ Mem , identified by its address

(either absolute or relative to the initial stack pointer SP );
• an arithmetic expression (Expr ×Ψ×Expr) where Ψ is

the set of arithmetic operators {+,−,×,÷,mod};
• >, which denotes an unknown value.
Constants in C := Z/232 × {∅,+SP} are 32-bit signed or

unsigned integers that may or may not be relative to the initial
state of the stack pointer (+SP marker). Considering the stack
pointer SP as a symbolic value enables the analysis to be
independent of its actual value; this assumes that subroutines
cleanly manage the call stack.

2) State concretization: The concretization function γ :
Ŝ → P(S) is a common tool used to check the soundness of
an abstraction. For any state ŝ := (l,m, p) ∈ Ŝ = L×M×P ∗,
we define the concretization function as

γ(ŝ) := γL(l, p) ∩ γM (m, p)

γL(l, p) := {s ∈ S | s(rk) ∈ γe(l(rk), p) ∀rk ∈ Reg}
γM (m, p) := {s ∈ S | s(mc) ∈ γe(m(mc), p) ∀mc ∈ Mem}

where γe : Expr → P(Z/232) is the concretization of
an expression over S, inductively defined in what follows.
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Constants (c ∈ C) are evaluated to a singleton as such, where
sp0 designates the initial value of the stack pointer:

γe(c, p) :=

{
{k} if ∃k ∈ Z/232, c = k

{k + sp0} if ∃k ∈ Z/232, c = k + SP

γe(>, p) := Z/232, because > represents any value.
In the case of an arithmetic expression e := (e1, ψ, e2), we

define γe using fψ , the function that applies the binary opera-
tion (e.g. addition) corresponding to the arithmetic operator ψ.

γe(e, p) := {fψ(k1, k2) | k1 ∈ γe(e1, p) ∧ k2 ∈ γe(e2, p)}

Finally, we define the concretization of any variable v ∈
V as the set of values with which the system of predicates
remains satisfiable:

γe(v, p) :=
{
x ∈ Z/232

∣∣ ((v = x) ∧
∧
pi∈p

pi
)
6= ⊥

}
Using this, states x ∈ P(Ŝ) at a program point can be

concretized as γ(x) :=
⋃
ŝ∈x γ(ŝ).

3) Joining: While the analysis runs through the CFG,
the number of states at program points quickly increases as
they must encompass all the execution paths to that point.
Since each condition doubles the path count, the growth is
exponential even in loopless programs.

We therefore introduce the operator t : P(Ŝ) × P(Ŝ) →
P(Ŝ), which joins states using the set union operator, and
may shrink them using the u : P(Ŝ) → Ŝ operator. This
happens when the states count reaches a tunable thresold η ∈
[1,+∞], which offers a trade-off between performance (speed
and memory usage) and efficiency3.

For any program states x, x′ ∈ P(Ŝ), we define:

x t x′ :=
{l

(x ∪ x′)
}

if |x|+ |x′| > η

x t x′ := x ∪ x′ otherwise

based on the shrinking operator
d

, defined on x =
{ŝ1, . . . , ŝn} as the intersection of all its abstract states

d
x :=d

i∈[1,n] ŝi ∈ Ŝ. The concretization of the state resulting from
this intersection will include the concretization of each of the
original states: γ(

d
x) ⊆

⋃
i∈[1,n] γ(ŝi).

The intersection is defined on two states ŝ := (l,m, p) ∈ Ŝ
and ŝ′ := (l′,m′, p′) ∈ Ŝ by:

ŝ u ŝ′ :=


rk 7→

{
l(rk) if l(rk) = l′(rk)

> else

mc 7→

{
m(mc) if m(mc) = m′(mc)

> else

p ∩ p′


Predicates are expressed in a canonical form, such that

p ∩ p′ preserves most semantically equivalent predicates. For
example, there cannot be a + 1 > 0 and 0 < 1 + a
in different states: we make sure there are no syntactically
different predicates that are equivalent by commutativity.

3 We empirically chose η = 250 for the most sizeable benchmarks, yet
η = +∞ (never shrink) suffices for small benchmarks.

B. Interpreting instructions
We define the interpretation function on the abstract domain

Î : Isem → Ŝ → Ŝ, using the notation l[rk 7→ e] to denote l
where rk has been changed to map to e (and similarly on m).

For example, the addition instruction is interpreted as such:

Î[ADD r0, r1, r2] := (l,m, p) 7→ (l [r0 7→ l(r1) + l(r2)] , m, p)

Sometimes, assembly instructions are too complex to be
translated to semantic instructions, or to be completely ex-
ploited. For this purpose, we introduce the SCRATCH ri
semantic instruction which sets an undefined value to ri.

Although the register ri could be set to >, it is more
beneficial to introduce a new variable vk ∈ Var and to enrich
the set of expressions Expr with this new Var set. The> value
is destructive for the subsequent computations and conditions,
while the introduced variables record the identity and source of
an unknown value. This allows us to maintain existing links
between different variables that use an unknown result, and
these links may suffice to detect conflicting conditions. We will
thus introduce a new, arbitrarily named vk ∈ Var variable to
interpret, for example, the SCRATCH r4 semantic instruction:

Î[SCRATCH r4] := (l,m, p) 7→ (l[r4 7→ vk],m, p)

Example: to highlight the benefits of this practice, assume
a program stores the result of a complex computation in a
register ri. Then, rj receives ri + 1. Later, an if block is
entered if and only if ri = rj . This is a trivial infeasible
path (dead code), yet if we had represented the result of
the complex computation by a >, we would be unable to
detect it. This is because ri and rj would have been set
to an anonymous >, making their comparison impossible
(>+ 1 = >). Instead, we (automatically) represent the result
of the complex computation by a vk variable, and yield the
vk = vk + 1 predicate, exhibiting an obvious contradiction.

This variable introduction technique can also be used to
deal with memory reads to unknown addresses by LOAD.
The LOAD ri, rj semantic instruction reads an integer from the
memory at the address contained in the register rj and stores
it in the register ri. If l(rj) is a constant a, then we update l to
map ri to m(a). If l(rj) is not a constant, the unknown result
of the memory access is represented by a newly generated
variable vk ∈ Var . Thus, for any ŝ := (l,m, p) ∈ Ŝ,

Î[LOAD ri, rj ](ŝ) :=

{
(l [ri 7→ m(l(rj))] ,m, p) if l(rj) ∈ C

(l [ri 7→ vk] ,m, p) if l(rj) /∈ C
The STORE instruction, which puts a value in a memory

cell, is more damaging when the address is not a known
constant: we have to “scratch” the whole memory and lose any
information previously collected. For this reason, it is crucial
to handle all instructions that modify the stack pointer well.
Assuming that the heap and stack memories are semantically
separated (stack pointer relative addresses never hit the heap
and vice versa), memory accesses may sometimes be cate-
gorised into accesses to the heap or stack memory depending
on the way the address was computed, resulting in a lesser
loss of information.
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f

g

x = 0
y = 0
i = 0
a = af0

qh = ENTER

x = 1
y = 2
i = 1
a = af0
qh = FIX

x = >
y = >
i = >
a = af0
qh = FIX

x = >
y = >
i = >
a = af0

qh = WIDEN

x = xh0 + 1
y = yh0 + 2
i = ih0 + 1
a = ah0

qh = WIDEN

x = xh0 + Ih
y = yh0 + 2Ih
i = ih0 + Ih
a = ah0

qh = LEAVE

x = Ih
y = 2Ih
i = Ih
a = af0

qh = ENTER

. . .

2nh = 2nh + af0

. . .

2nh 6= 2nh + af0

. . .
2nh = 2nh + ag0
ag0 mod 4 6= 0

⊥

. . .
2nh = 2nh + ag0
ag0 mod 4 = 0

. . .
2nh 6= 2nh + ag0
ag0 mod 4 6= 0

. . .
2nh 6= 2nh + ag0
ag0 mod 4 = 0

fh
fh
∩

fh
≡

φc
fh

∇hŝh

ŝi

ŝh ◦ ŝi

A, 1 B, 3 C, 3 D, 3

E, 3F, 3G, 2
H1, 4

H2, 4

I1, 6 I′1, 6 I2, 6 I′2, 6

Fig. 3. Abstract interpretation of Example 1

C. Modular analysis

Abstracting away subroutine calls in a program by virtually
inlining the called code may simplify binary code analysis,
but it comes with several drawbacks. Firstly, it duplicates
the abstract interpretation process as many times as there are
calls to the same subroutine. Secondly, it struggles to find
infeasible paths that are independent of the call point of a
subroutine: it will duplicate them and output one infeasible
path per call point. Finally, designing a composable analysis
that can be limited to the scope of any single-entry region,
similarly to [10], also benefits loop analysis, what will be
demonstrated in the next section.

Because of this, we want to be able to individually process
any Single Entry Single Exit (SESE) region as a program state
before composing it with the rest of the analysis. Interesting
SESE regions may be functions (with an entry and a virtual
exit node) or loop bodies (the loop header acts as both the
entry and the exit).

In order to make abstract states easily composable, we ex-
press them in function of the initial state of the program at the
entry of the SESE region. This region will be entered with the
identity state, defined as (IdL, IdM , ∅) where IdL (resp. IdM )
maps each register (resp. each memory cell) to itself, in fact
to its initial value. With this convention, the variables of Expr
represent their (unknown) value at the entry of the region, and
the abstract states represent the operations that are performed
on the machine since the beginning of the local analysis.

We denote the map of a register or memory address to an

expression as a pseudo-predicate. For example, if x maps to
x+1 in l, we will express it as x = x0+1, where x0 represents
the initial value of x at the beginning of the region. When it is
unclear what the scope of x0 is, we note it xk0 , where k may
either be a function or a loop identifier.

This enables us to define a state composition operation
where ∀ŝ, ŝ′ ∈ Ŝ, ŝ ◦ ŝ′ is ŝ applied to ŝ′. If x, x′ ∈ P(Ŝ),
we define x◦x′ as the cartesian product of its states: x◦x′ :=
{ŝ ◦ ŝ′ | ŝ ∈ x, ŝ′ ∈ x′}.

For ŝ := (l,m, p), ŝ′ := (l′,m′, p′), we define:

ŝ ◦ ŝ′ :=
(
rk 7→ σŝ′(l(rk)),mc 7→ σŝ′(m(mc)),

{(σŝ′(e1), φ, σŝ′(e2)) | (e1, φ, e2) ∈ p} ∪ p′
)

where σŝ′ is the function that transfers an expression to the
scope of ŝ′, defined as:

σŝ′(c) :=

{
k if ∃k ∈ Z/232, c = k

k + l(sp) if ∃k ∈ Z/232, c = k + SP
∀c ∈ C

σŝ′(rk) := l′(rk) ∀rk ∈ Reg

σŝ′(mc) := m′(mc) ∀mc ∈ Mem

σŝ′(e1, ψ, e2) := (σŝ′(e1), ψ, σŝ′(e2)) ∀e1, e2 ∈ Expr , ψ ∈ Ψ

and the identity IdExpr for any other expression.
Using this definition, the application of ŝ to ŝ′ is a simple

operation that, on ŝ, (a) replaces all registers and memory
cells in the expressions of l, m and p by their current value in
ŝ′, and (b) adds the unchanged predicates of ŝ′. Intuitively, we
update the initial values of ŝ by the results of ŝ′. The resulting
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state will be expressed in function of the initial values from
the scope of ŝ′.

For instance, applying a state mapping {x 7→ y0+1, y 7→ 2}
(for example, from a called function) to another state mapping
{x 7→ >, y 7→ 0} (for example, from a call point) gives a state
with {x 7→ 0 + 1, y 7→ 2}.

D. Working on loops

As we want to precisely represent the state of the program at
any iteration of a loop, we will augment Expr with induction
variables of the form Ih, which represent the amount of past
iterations of the loop identified by the loop header h ∈ V .
This enables us to accurately represent linear progressions
inside loops, such as simple integer iterators (in a typical C
for loop, for example).

We will later use this information to find conflicts valid for
any iteration of a loop, which are usually the most interesting
ones because of their significant potential impact on the
WCET. This information can also be used to better control
write accesses to arrays being parsed in loops (because we can
identify the range of accessed addresses in memory).

In order to get abstract states expressed in function of
those induction variables, we need to define a widening. The
widening ∇h : Ŝ → Ŝ of a state on a loop identified by
its header h ∈ V is a key function that is obtained, for any
ŝh ∈ Ŝ, by computing a fixpoint on f : ŝ 7→ ŝh∇h ŝ, starting
with the state >4. For any ŝh = (lh,mh, ph),

ŝh∇h ŝ := (rk 7→ ∇rkh (ŝ, lh(rk)),mc 7→ ∇mc

h (ŝ,mh(mc)), ∅)

∇h transforms a state representing the effect of one iteration
of the loop (any path going from h to h without exiting the
loop) to a state representing the effect of Ih iterations.

The widening of an expression e is defined, for any x ∈ V
and ŝ = (l,m, p) ∈ Ŝ as ∇xh(ŝ, e) :=

e if e = x ∨ e ∈ C
l(e)[Ih → Ih − 1] if e ∈ Reg ∧ e 6= x

m(e)[Ih → Ih − 1] if e ∈ Mem ∧ e 6= x

x+ Ih × k if ∃k ∈ C, e = x+ k

x− Ih × k if ∃k ∈ C, e = x− k
φ(∇xh(ŝ, e1),∇xh(ŝ, e2)) if ∃e1, e2 ∈ Expr x̄, e = φ(e1, e2)

> else

where the notation e[Ih → Ih− 1] denotes the expression e
where all occurences of Ih have been replaced by Ih − 1 and
where Expr x̄ is a subset of Expr without the variable x.

In the Example 1 illustrated in Fig. 2, the basic blocks 2
and 3 make up a loop. If we considered the C variables x, y,
and i to be machine registers or memory cells, the state ŝ0 at
the entry of 2 would be initialised to {x 7→ x

2

0 , y 7→ y
2

0 , i 7→
i

2

0 }. After one iteration, we get ŝ1 : {x 7→ x
2

0 + 1, y 7→
y

2

0 + 2, i 7→ i
2

0 + 1}, that is, the state (E) on the Fig. 3. The
widening produces ŝh := ŝ0∇ 2 ŝ1 : {x 7→ x

2

0 + I 2 , y 7→
y

2

0 + 2I 2 , i 7→ i
2

0 + I 2 } (F ).

4The abstract state > ∈ Ŝ maps any variable to >.

Then, using information from ŝi, the state on the entry edge
1 → 2 of the loop, which is {x 7→ 0, y 7→ 0, i 7→ 0} (A),

we deduce that the general state valid at the block 2 for any
iteration of the loop is ŝ := ŝh ◦ ŝi = (ŝ0∇ 2 ŝ1) ◦ ŝi, which
gives {x 7→ 0 + I 2 , y 7→ 0 + 2I 2 , i 7→ 0 + I 2 } (G).

The resulting state at the loop exit is {x 7→ n 2 , y 7→
2n 2 , i 7→ n 2 } (H) where n 2 is the final iteration count. If
knowledge of n 2 has been fed from an external loop analysis
or from given flow facts of the benchmark, it is replaced by its
constant value. Otherwise, it is kept as a variable throughout
the rest of the program analysis, which could still be useful
because taking the conditional edge 2 → 4 which exits the
loop will generate an i ≥ N predicate, indirectly bounding
n 2 . Interestingly, the analysis finds some loop bounds on-the-
fly as a side effect of this abstract interpretation.

Widening uses simple algebraic properties to generalise lin-
ear sequences in loops. For example, the predicate x = xh0 −3
obtained after an iteration over a loop h would be widened to
x = xh0 − 3Ih. Although more general arithmetico-geometric
sequences (of the type xn+1 = axn + b, a and b constants)
could easily be generalised as well, they contain a power term
(an). This would make the predicate too complex to be used
in an SMT solver, such non-linear predicates are thus safely
removed from the conjunction fed to the solver.

V. PROGRAM ANALYSIS

We will now use the previously defined abstraction and
operations defined on abstract states to perform the analysis
of the whole program and detect infeasible paths.

A. Identifying an infeasible path

The program is parsed in order to acquire knowledge of
which program states are possible for each path and each
point of the program. Our analysis aims to find infeasible
paths, that is, paths that lead to an empty set of possible
concrete states. Because obtaining such precise information
is realistically unachievable, the abstract states described in
the previous section provide an overestimation of the set of
concrete states: an empty set of possible program states still
safely denote an infeasible path. While the overestimation may
cause the analysis to miss some infeasible paths, the soundness
of the estimated WCET is not threatened: a missing infeasible
path always leads to safe overestimation.

Notation: we use the abstract state ⊥ ∈ Ŝ to represent an
impossible state: γ(⊥) = ∅. At the opposite, > ∈ Ŝ represents
any state: γ(>) = S.

The > state may be used by the analysis to enter the
program with an initial state devoid of any information,
making it valid for any execution of it.

The aim of our analysis is to reduce states to ⊥ whenever
possible, which indicates that the path represented by the
state is infeasible. In order to exploit this property, we will
remember the path any abstract state represents by annotating
it with any edge it goes through.

Because our abstract state representation is isomorphic
to a conjunction of predicates over integer variables, linear
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integer SMT solving arises as an appropriate solution to the
satisfiability problem, that is, asserting the existence or lack
thereof of a solution to the system.

Although we have chosen to use CVC4 [3] as the SMT
solver for our experiments, our analysis is largely solver-
independent and has been made to work with z3 as well with
almost identical results, overall slightly faster execution times,
but a slightly heavier memory load.

Each abstract state is annotated with the path it represents,
and each predicate is associated with the CFG edges respon-
sible for it. Upon finding an unsatisfiable (⊥) state, instead of
using the entire path it represents, a family of infeasible paths
is produced when possible with a minimal amount of edges,
using only edges that have affected the predicates responsible
for the conflict. This is made possible by the exploitation of
unsat cores, a minimal subset of constraints responsible for
the unsatisfiability of a problem, which some SMT solvers
are able to output.

In order to further minimise infeasible paths, we use
dominance and post-dominance information from the CFG
to detect unnecessary edges. For example, if an infeasible
path contains two edges e1, e2, then e1 is superfluous if e1

dominates e2; inversely, e1 is superfluous if e1 post-dominates
e2. The historical definition of dominance according to [5],
which can easily be extended to edges in a CFG, is that “box
i dominates box j if every path which passes through box j
must also pass through box i”. Reciprocally, an edge e2 post-
dominates e1 if every path from e1 to an exit node contains
e2.

Because our analysis on a subroutine produces predicates
that are function of the initial state of the registers and the
memory, we are also able to find infeasible paths a posteriori
in subroutines, when we learn the context of the various call
points of that subroutine and the parameters it was called with.

B. Parsing the CFG

The functions of the program are parsed separately, in an
order that depends on the Program Call Graph (PCG): a
function is always parsed after the functions it calls (recursive
functions are not supported). Upon reaching a function call,
we compose the states of the caller with the resulting states of
the callee function that would have been analysed beforehand.

The analysis runs the Algorithm 1 on the CFG of the main
subprogram, and its result is the union of the infeasible paths
(ips) of all parsed CFGs.

1) Definitions: For any edge e ∈ E, sink(e) is the
destination basic block of e and for any block b ∈ V , ins(b)
is the set of incoming edges to b and outs(b) is the set of
outgoing edges. Two states ŝ and ŝ′ are equivalent, noted
ŝ ≡ ŝ′, if and only if γ(ŝ) = γ(ŝ′).
φC is a projection over constants: for each rk in l (resp. mc

in m), φC keeps l(rk) (resp. m(mc)) if it is a constant and
behaves as the identity otherwise. For any v ∈ V (Reg ∪Mem),

φC(v) := x 7→

{
v(x) if v(x) ∈ C
x else

This builds an initial state enhanced with information on
registers and memory cells that remain constant between loop
iterations, which is used to generate the state that will be
widened after one iteration on the loop.

For any edge e, Î[e] : Ŝ → Ŝ is the interpretation function
that processes all the semantic instructions associated to e. If e
is a call edge, it parses recursively the called CFG, and applies
ŝω , the state at the exit of the called function, to the current
state ŝ; the program analysis continues with the state (ŝω ◦ ŝ).

Finally, the check(ŝ, . . . ) function translates the abstract
state ŝ into SMT predicates and feeds them to the solver in
order to check for the satisfiability of our system.

2) The algorithm: The core analysis of the CFG is made of
the non-greyed part of Algorithm 1. All edges e are annotated
by a program state, noted se ∈ P(Ŝ). We set up a working
queue, wl , to collect basic blocks that need to be processed,
initially the entry of the CFG. The algorithm iterates by
popping a block from the wl queue until it is empty. If all
the incoming edges of said block have been processed, then
the states of those edges are joined, and the annotation cleared.
The code associated to each outgoing edge e of the current
block is then interpreted (̂I[e]) and annotated on se. Then,
the solver checks for the satisfiability of each abstract path
and we add the target of each outgoing edge to wl .

C. Parsing loops
1) Definitions: For any CFG G, we name HG the set of its

loop headers and BG the set of its back edges. L(h), defined
for any h ∈ HG, is the set of blocks within the body of the
loop whose header is h. Similarly, X(h) is the set of edges
that exit from the loop identified by h.

2) Overview: Upon reaching a loop header with a state ŝ,
the body of the loop is applied to an identity initial state, which
is then widened and applied to ŝ. The interpretation function
Lh(ŝ) of a loop h is thus defined for any state ŝ as:

Lh(ŝ) := ∇h(fh(ŝ)) ◦ ŝ

where fh : Ŝ → Ŝ is the abstract function that applies one
iteration of the loop h. The effect of the application of this
function to ŝ is obtained by parsing the loop once with ŝ.

In order to be able to properly deal with memory addresses
and better identify arithmetic progressions, a fix point is run
on the loop beforehand to identify constants.

Loop headers are annotated by two abstract states ŝh (used
to find a fix point) and ŝih (used to remember the state we
entered the loop with), as well as a status indicator q, which
follows the automaton of Fig. 4. We present an algorithm that
applies Lh on any state entering a loop h.

Fig. 4. Parsing a loop
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Algorithm 1 Processing a program
Data: G = (V,E, ε, ω), the CFG of the program.
Result: ipsG, the set of infeasible paths; and sω .

for e ∈ E do
se ← nil

end for
for h ∈ HG do

sh ← nil
sih ← nil
qh ← ENTER

end for
sε ← {(IdL, IdM , ∅)}
wl ← {sink(ε)}
ipsG ← ∅
while wl 6= ∅ do

b← pop(wl)

pred ←


ins(b) if b /∈ HG

ins(b) \BG if b ∈ HG ∧ qb = ENTER

ins(b) ∩BG if b ∈ HG ∧ qb 6= ENTER

if ∀e ∈ pred, se 6= nil then
s←

⊔
e∈pred se

for e ∈ pred do
se ← nil

end for
suc ← outs(b)
if b ∈ HG then

s←
d
s

else if qb = LEAVE then
qb ← ENTER
sb ← nil
suc ← ∅
if ∃e ∈ ins(b), se = nil then

wl ← wl ∪ {b}
if qb = ENTER then

qb ← FIX
sib ← s

else if qb = FIX ∧ s ≡ sb then
qb ← WIDEN
s← (φC(l), φC(m), ∅)

else if qb = WIDEN then
qb ← LEAVE
s← ∇b(s) ◦ sib

end if
sb ← s

end if
end if
for e ∈ suc \ {X(h) | b ∈ L(h) ∧ qh 6= LEAVE} do

se ← I[e](s)
ipsG ← ipsG ∪ check(se, {(h, qh) | b ∈ L(h)})
wl ← wl ∪ {sink(e)}

end for
end if

end while

3) The algorithm: All loop headers are initialised at ENTER,
indicating that the loop has not been parsed yet, as in state
(A) on Fig. 3. After the algorithm enters the loop, it sets the
status to remain on FIX (B,C) until a fix point is reached (D)
then iterates on it once more (WIDEN status) with constant
information only (E).

Finally, we widen, yielding a state that represents any
iteration of the loop ((F ), equivalent when applied to the
function fh), and we go through the exit edges with it (LEAVE
status), before resetting the loop to ENTER (G). We only
follow a loop exit edge when all the loops it is exiting from
are in a LEAVE status.

Furthermore, the satisfiability check function check(ŝ, {(h1,
q1), . . . , (hn, qn)}) is made aware of the loops hi that the edge
being analysed is part of, as well as their respective statuses qi.
This enables it to select which loop iterations the conflict will
be valid for (any iteration, first iteration, or last iteration). This
is necessary to generate sound infeasible paths.

On the Example 1, the application of the algorithm
leads us to reach an unsatisfiable state (I1) on one of the
four paths leaving from 6 . This yields the infeasible path
4 → 5 → 6 → 8 .

The next section showcases our techniques on several rele-
vant real-time benchmark suites.

VI. EXPERIMENTS

A. Overview

Estimating the WCET: We present on the Fig. 5 our
experiments on the Mälardalen benchmarks suite [6] (exclud-
ing a few recursive programs, which are rare in real-time
critical systems), the PapaBench real-time benchmarks [13],
as well as benchmarks derived from the DEBIE-1 Flight
Software5, which was operated for several years on the ESA
PROBA I satellite. All programs are statically compiled with
no optimization by GCC 4.9.3 for the ARMv5T architecture
and a LPC2138 processor.

For each benchmark, the first columns show its basic
block count (BB), its instruction count (Inst.), its loop count
(including loops that are introduced by the compiler) and the
maximum loop depth in the program. The next two columns
display the execution time of the infeasible path analysis
performed on a 2.50GHz i7-6500U CPU, 4GB memory and
the percentage of time that was spent in SMT solving. The
next two columns show the amount of conflicts found (each
represents one infeasible path), before and after a minimisation
process (attempting to merge infeasible paths that come from
the same predicate conflict) which aims to losslessly simplify
the output and reduce the complexity of the WCET compu-
tation. Conflicts between CFG edges are translated to ILP
constraints using the technique developed in [14], although
better results could be achieved with more advanced exploita-
tion techniques of path conflicts [12]. The gain obtained by
adding these constraints is shown in the last column.

5https://www.irit.fr/wiki/doku.php?id=wtc:benchmarks:debie1
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Benchmark / Task BB (#) Inst. (#) Loops (#) Max depth Time (s) SMT % IPs (#) Min. IPs (#) WCET gain
TINY MÄLARDALEN BENCHMARKS (LESS THAN 30 BB)

fibcall, insertsort, fdct, bs, jfdctint, janne complex, ns, duff, bsort100, lcdnum, matmult, crc, fir: no infeasible path found.
SMALL MÄLARDALEN BENCHMARKS (NO STATE SHRINKING)

prime 43 193 14 2 1.491 98% 50 50 27.452%
expint 43 251 12 2 0.744 98% 56 20 6.553%
select 56 321 4 3 20.825 88% 2106 1178 0.000%

qsort-exam 58 369 6 3 24.488 99% 2096 1168 0.000%
edn 70 1123 18 3 0.428 92% 4 4 0.000%
ndes 83 796 12 2 2.187 98% 140 140 0.000%
cnt 94 511 7 2 42.469 99% 1040 1040 0.000%

compress 109 728 17 2 121.387 96% 23 23 0.000%
cover 205 822 3 1 0.504 96% 3 3 3.059%

LARGE MÄLARDALEN BENCHMARKS (REQUIRING STATE SHRINKING)
ud 122 802 20 3 14.630 97% 231 57 0.000%

adpcm 171 1797 33 3 10.236 99% 11 11 0.002%
qurt 245 1390 111 2 44.929 98% 894 780 15.165%
sqrt 272 1236 11 2 479.508 99% 6591 1845 10.479%

ludcmp 276 1669 35 4 215.110 98% 1741 784 0.000%
minver 286 1730 35 4 140.115 99% 1584 405 3.363%

fft1 337 1882 216 4 3693.147 93% 134008 11596 14.607%
statemate 387 2530 1 1 250.279 99% 6433 5458 1.297%

lms 527 2582 116 3 657.364 97% 1396 615 2.177%
nsichneu 756 8088 1 1 261.522 74% 19415 19145 0.000%

DEBIE1 BENCHMARKS
TM InterruptService 19 96 0 0 0.066 98% 0 0 -

HandleHitTrigger 64 291 3 2 0.969 99% 15 11 41.959%
TC InterruptService 69 276 0 0 2.191 98% 30 30 0.000%
HandleTelecommand 190 768 13 2 3.856 85% 144 141 0.000%
HandleAcquisition 303 1321 19 1 14.095 99% 126 126 0.156%

HandleHealthMonitoring 425 1670 100 3 230.381 98% 5094 4538 30.746%
PAPABENCH BENCHMARKS (FLY-BY-WIRE PROGRAM)

servo transmit 13 54 1 1 0.121 99% 10 4 0.000%
send data to autopilot 121 562 10 1 11.667 98% 6 6 0.000%

check failsafe 148 639 24 1 17.695 93% 114 114 0.000%
check mega128 values 150 655 24 1 15.629 93% 114 114 0.000%

test ppm 270 1170 36 1 36.438 96% 518 518 0.247%
PAPABENCH BENCHMARKS (AUTOPILOT PROGRAM)

link fbw send 3 32 0 0 0.005 100% 0 0 -
altitude control 96 388 2 1 4.673 98% 49 49 0.000%

stabilisation 200 859 13 1 8.844 97% 239 239 0.534%
climb control 252 1066 15 1 23.751 96% 320 320 0.460%

reporting 418 3943 0 0 70.716 99% 2879 2879 0.000%
radio control 424 2398 39 1 71.345 98% 2803 2803 0.000%

receive gps data 574 3310 57 1 89.189 98% 2618 2590 2.590%
navigation 1004 4643 1018 1 409.404 94% 3273 2899 0.000%

Fig. 5. Experimental results

B. Results

It is very difficult to confidently conclude on the efficiency
of an infeasible path analysis (as for most WCET estimation
analyses) because the actual set of infeasible paths (and the
actual WCET) is unknown. Also, the amount of infeasible
paths is a poor indicator: a large amount of data flow con-
straints may not result of a successful analysis but instead
of poor infeasible path factorisation, that would contain paths
including unimpactful edges, causing them to be duplicated
many times in the output.

It is also clear that most infeasible paths do not affect
the WCET estimation (because they are not on the WCEP),
and that their overall impact is very variable. For example,
the thousand constraints of cnt do not affect the WCET
estimation, while the fifty of prime did very much. This phe-
nomenon is expected: the results of the analysis are generally

polluted by a lot of infeasible paths that would be cheap to
execute. This does not undermine the rarer impactful conflicts.

A significant part of the benchmarks from the chosen suites
is simply too small to be relevant: one can hardly imagine
an infeasible path could be hidden in a program made of
a dozen of basic blocks. Indeed, no infeasible paths were
found in any benchmark smaller than 30 basic blocks (that
is, 13 Mälardalens, one Debie1 and one PapaBench).

However, while the results obtained on PapaBench are
inconclusive, the important gains on two Debie1 tasks are
encouraging signs that such analyses significantly improve the
WCET estimation of actual real-time applications. Some of
the most complex, sizeable Mälardalen benchmarks also show
significant reduction of the WCET estimation, with three large
benchmarks exceeding 10%.

This supports the idea that algorithmic complexity favours
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the introduction of infeasible paths, partly because it becomes
harder to structure the code in order to avoid conflicting
conditions, and partly because subroutines in larger programs
tend to be called with contexts that lead to the program flow
skipping expensive chunks of code.

Important increases in analysis times are observed on pro-
grams with high amounts of calls and loops (such as fft1).
Experiments suggest the analysis scales rather well with code
size, as the analysis deals with path explosion by regularly
shrinking states (this is best showcased on nsichneu).
SMT solving represents most of the complexity cost of the
analysis (both with CVC4 and z3). The problems we queried
to the SMT solver are generally easy, with many small connex
components; yet calls to the solver are the most time costly
part of our analysis because of their high frequency, requiring
a lot of initialisation work. The complexity of the analysis
on larger benchmarks than the Mälardalens could be reduced
with a policy that performs more sparse SMT calls, instead of
making a call on each condition.

Considering the observed simplicity of the large majority
of conflicting predicates detected, SMT solving may also be
an overkill: a lighter (possibly ad-hoc) solver would probably
be much faster while missing little to none of the conflicts an
SMT solver detects in most common benchmarks.

VII. CONCLUSION

We have presented in this paper an infeasible path lookup
analysis that benefits from being split and composed from the
analysis of smaller parts of the program, the SESE regions
made of the bodies of loops and subroutines. In doing so, we
output data flow conflicts valid in the most possibly general
scope, maximising their potential impact on the reduction of
the WCET overestimation. Infeasible paths within loops are
made independent of the context the iteration started with
whenever the conflict is detected to be local to an iteration;
similarly, those within functions are made independent of the
calling arguments whenever possible.

Our experiments on the Mälardalen benchmarks display
conclusive results, including the reduction of the WCET
estimation for three of the larger benchmarks by over 10%.
The results on the Debie1 and PapaBench benchmarks prove
the analysis scalable enough to work on actual, moderately
sizeable hard real-time applications. While the presence and
impact of infeasible paths on real life applications are bound
to vary a lot, the removal of infeasible paths from the ILP
system computing the WCET has very importantly reduced
the overestimation on some of the analysed tasks.

Although those results were promising, our works leave
some clear paths of improvements. While the resource con-
sumption of the analysis remained somewhat limited on most
benchmarks, the use of a more appropriate technique to
identify conflicting predicates is a simple, straight-forward
way to massively boost the speed of the analysis. As noted in
Section IV, loop bounds on the binaries could also be found
during the analysis at little cost and combined to the set of
additional ILP constraints we already produce.

Furthermore, several types of infeasible paths remain un-
detectable by our analysis, such as inter-loop conflicts (for
example, a path that cannot be taken in two successive
iterations). Finally, ILP solving supports numerical constraints
that express that a path can be, for example, taken at most
n times in a loop; such constraints could be output by the
information we are already acquiring during loop analysis,
given an appropriate solving technique.
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